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We report theoretical investigations on how edge states are destroyed in disordered mesoscopic samples by
calculating a “phase diagram” in terms of energy versus disorder strength �E ,W�, and magnetic field versus
disorder strength �B ,W�, in the integer quantum Hall regime. It is found that as the disorder strength W
increases, edge states are destroyed one by one if transmission eigenchannels are used to characterize the edge
states. Near the insulating regime, transmission eigenchannels are closed one by one in the same order as edge
states are destroyed. To identify those edge states which have survived disorder, we introduce a generalized
current density that can be calculated and visualized.
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I. INTRODUCTION

When a two-dimensional mesoscopic sample is subjected
to external magnetic field, peculiar electronic states—edge
states, may be established at the boundaries of the sample.1,2

Classically, Lorentz force pushes electrons toward the
sample boundary and electron trajectories become skipping
orbits. Edge states can be considered as the quantum version
of skipping orbits.2 Importantly, edge states in mesoscopic
samples provide necessary density of states �DOS� between
the Landau levels, integer quantum Hall effect �IQHE� can
therefore occur in the clean sample limit.2 In contrast, for
infinitely large samples, a degree of disorder in the sample
appears necessary which provides DOS in between Landau
levels to stabilize the Fermi energy for IQHE.3 Nevertheless,
increasing disorder will eventually destroy IQHE and how
does this happen has been an important issue attracting nu-
merous studies.

Here we address the disorder issue for mesoscopic
samples, namely, how edge states are destroyed by disorder
in the IQHE regime and, at a fixed filling factor ��1, are
edge states destroyed all at once or one by one. These im-
portant questions provide insight to the IQHE phase diagram
for mesoscopic samples, and may shed light to similar prob-
lems in samples of infinite size. We address these questions
by extensive calculations on a mesoscopic graphene system4

and a square lattice model �see inset of Fig. 1�a�� to map out
a “phase diagram” of edge states in the presence of disorder.
Here the “phases” in the “phase diagram” denote quantum
states and no phase transitions are implied between these
states. We use transmission eigenchannels to characterize
edge states �see below�, and we found that they are destroyed
one by one. At large enough disorder, the system becomes an
insulator and transmission eigenchannels are closed one by
one in the same order as the edge states are destroyed.

We begin by discussing our definition of edge states as
well as the way to visualize them. In transport theory, for
each incoming channel of a semi-infinite lead � whose wave
function is �W�,m� where m=1,2 , . . . ,N denotes one of the N
channels, one solves a scattering problem. �W�,m� is an eigen-
channel of lead � but not the entire device. To find the eigen-

channels of the entire device, we diagonalize5 the transmis-
sion matrix T by a unitary transformation U, for a two-probe
device having scattering matrix SRL, T=SRL

† SRL. Mathemati-
cally, this means acting U on the incoming channels �W�,m�
�which is a column vector with N components� to obtain a

new set of orthogonal incoming modes �W̄�m�
=�n�W�,n�Unm. Once done, �W̄�,m� is an eigenstate of the
entire device �leads plus scattering region�. In other words, if

an incoming electron comes at state �W̄�,m�, it will traverse
the entire device without mixing with any other eigenstate

�W̄�,m��. This way, the resulting transmission matrix T
=U†TU is diagonal. In the presence of a strong magnetic

field B, it is therefore natural to identify �W̄�m�B�� as edge
states because they are the eigenstates or eigenchannels of
the entire device sample. How to visualize edge states in the
IQHE regime? This may be achieved by plotting the current

FIG. 1. �Color online� �a� and �b� are “phase diagram” of edge
states of a zigzag graphene ribbon for energies near the Fermi level
�Dirac electrons�: �a� in the �E ,W� plane; �b� in the �B ,W� plane. �c�
The order of closing of eigenchannels at large disorder. Color cod-
ing is for number of eigenchannels.
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density in real space. The subtle issues of current density in
IQHE have been discussed in Ref. 6. In our work where
there are disorders in the sample, the eigenchannels provide a
convenient way to define a generalized current density for
each channel—since the eigenchannels do not mix. Clearly,
the total transport current is obtained by integrating current
density along any cross section perpendicular to the transport
direction.

II. NUMERICAL STUDY

The total transmission coefficient is obtained from the N
�N Hermitian transmission matrix T= �tij	. Applying an uni-
tary transformation U,5 we obtain T=U†TU= �ti�ij	, which is
diagonal with elements ti. The transmission coefficient ti of
eigenchannel i is a linear combination of tij. Using conven-
tional current density Jii= �ie� /2m���i��i

�−�i
���i�

− �e2 /m�A��i�2 with i=1,2 , . . . ,N, it is easy to show
�e2 /h�tii=
Jii ·ds in the linear bias regime, where tii is the
diagonal element of matrix T. In order to find an eigencur-
rent density Ji such that

e2

h
ti =� Ji · ds , �1�

we define a generalized complex current density Jij so that
�e2 /h�tij =
Jij ·ds. The unitary transformation on the incom-
ing wave function �W�,m� suggests the following definition:

Jij =
ie�

2m
�� j � �i

� − �i
� � � j� −

e2

m
A� j�i

�, �2�

where �i is the wave function in the scattering region due to
the incoming state �W�,i�. From this definition, we can prove
the relationship �e2 /h�tij =
Jij ·ds, as follows. It is not diffi-
cult to show that the following Ji satisfies Eq. �1�:

Ji = �ie�/2m���̄i � �̄i
� − �̄i

� � �̄i� − �e2/m�A��̄i�2, �3�

where �̄i=� j� jUji. Using this Ji, Eq. �1� becomes

e2

h
ti =� �

jk

UjiUki
� Jkj · ds . �4�

Denoting JG the generalized current-density matrix with ma-
trix elements Jij, Eq. �4� is equivalent to

e2

h
T = U†� JG · dsU or

e2

h
T =� JG · ds . �5�

We have also confirmed Eq. �3� numerically using specific
examples including that shown in the inset of Fig. 1�a�.
Therefore, to obtain eigen-current-density matrix, we first di-
agonalize the transmission matrix T to find the unitary matrix
U; we then calculate the generalized current density JG ac-
cording to Eq. �2�. The eigen-current-density matrix is finally
obtained by Jeigen=U†JGU and plotted for visualization.

Can eigenchannels be measured experimentally? To an-
swer this question, as an example let us consider a two-probe
device having two eigenchannels or two edge states in the
presence of magnetic field. Assume one can perform two

experiments: �i� measurement of conductance and �ii� mea-
surement of shot noise. Clearly, conductance is given by

G =
e2

h
�t1 + t2� . �6�

The shot noise is given by5

S =
e2

h
�t1�1 − t1� + t2�1 − t2�� . �7�

From these t1 and t2 can be determined. In the case of three
eigenchannels, one needs to experimentally measure an ad-
ditional quantity,7 for instance the third cumulant of current,

Y = �	Î�t1�	Î�t2�	Î�t3�� . �8�

In the linear regime, Y = �e2 /h��iti�1− ti��1−2ti�.8 Hence by
measuring G, S, and Y, one can determine t1,2,3. Therefore,
the transmission eigenchannels are physical quantities mea-
surable experimentally.

Having prepared analytical tools, we now present numeri-
cal calculations on how the edge states are destroyed by in-
creasing degrees of disorder. In the tight-binding representa-
tion, the Hamiltonian of a 2D graphene sheet can be written
as

H = �
i


ici
†ci − t�

�ij�
ei2��ijci

†cj , �9�

where ci
†�ci� is the creation �annihilation� operator for an

electron on site i. The first term in H is the on-site single-
particle energy where diagonal disorder is introduced by
drawing 
i randomly from a uniform distribution in the in-
terval �−W /2,W /2� where W measures the disorder strength.
In the absence of disorder, the on-site energy is 4t. The sec-
ond term in H is due to nearest-neighbor hopping that in-
cludes the effect of a magnetic field. Here the phase �ij
=
A ·dl /�0 and �0=h /e is the flux quanta. We fix gauge so
that A= �By ,0 ,0�; and current flows in the x direction. Trans-
mission coefficient is given by T=Tr�T� where the transmis-
sion matrix T is obtained from T=
RGr
LGa with Gr,a being
the retarded and advanced Green’s functions of the disor-
dered scattering region. Quantities 
���=L ,R� are the line-
width functions obtained by calculating self-energies �r due
to the semi-infinite leads.9 The numerical data are mainly
obtained from systems with 32�56 sites. In the calculations,
energy and disorder strengths are measured in unit of cou-
pling strength t.

In order to use Eqs. �2� and �3� to calculate the current
density, we note that the scattering wave-function appeared
in Eq. �2� is related to the Green’s function,10

���m� = �mGr�W�m� , �10�

where �W�m� is the mth renormalized eigenstate of linewidth
function matrix 
� such that 
�=�m�W�m��W�m�. The chan-
nel number m depends on the energy of incident electron,
�m=
�vm, and vm is the channel group velocity. Substituting
Eq. �10� into Eqs. �2� and �3�, the generalized current density
can be expressed in terms of the Green’s functions.

Numerically, an edge state is identified if transmission
coefficient of an eigenchannel is T�0.999 �Ref. 11�; if T
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�0.001, the eigenchannel is said to be closed. In addition, an
edge state is said to be “destroyed” by disorder and becomes
a regular eigenchannel if its transmission T drops to below
0.999. Figure 1�a� plots the phase diagram of edge states of
graphene in the �E ,W� plane with �=0.0173 and energy
range �0,0.85� where band dispersion is linear �Dirac elec-
trons�. A mesh of 600�480 points is scanned in �E ,W� plane
and up to 200 disorder configurations are averaged at each
point. Several observations are in order. First, the edge states
are destroyed one by one as W is increased. For instance, at
E=0.5 the �=3 edge state is destroyed when W=0.5. Very
importantly, we emphasize that at this disorder, there are still
three transmission eigenchannels although only two are edge
states and the third being a regular eigenchannel having T
�0.999. In other words, the third eigenchannel is still there
to participate transport although it is no longer an edge state.
Increasing disorder to W=0.7, the �=2 edge state is de-
stroyed; finally when W=1, all three edge states are de-
stroyed. We note that edge states would be destroyed all at
once if we had used the usual transmission coefficient for
each channel tii to characterize the edge states. Second, upon
further increasing W, an insulating state is reached where all
eigenchannels are closed. The order of channel closing is
also one by one, in the same order as how edge states are
destroyed. This is shown in Fig. 1�c�. For instance, at E
=0.5 there are three eigenchannels to start with, and at large
disorder W=3.1, one of them is closed leaving only two
regular eigenchannels. Third, the edge states are easily de-
stroyed at the subband edges while at the subband center
they are most robust against disorder. This is true even at the
Dirac point with E=0. This is because the energy of Landau
levels is located at the subband edge. In the presence of
disorder, the Landau level is broadened with a finite width.1

Hence the edge state that is close to one Landau level can
easily relax toward it. Fourth, it is more difficult to destroy
an edge state at smaller energies. For Dirac electrons, the
density of states is proportional to 
E so that the level spac-
ing of lower Landau levels is larger than the upper ones. For
electrons with smaller energy it is farther away from nearby
Landau level than electrons with larger energy. Hence a
larger disorder is needed to relax the electrons to the nearby
Landau level. Finally, Fig. 1�b� plots a “phase diagram” of
edge states in the �B ,W� plane for Dirac electrons. Once
again, the edge states are destroyed one by one, similar to the
phase diagram in the �E ,W� plane.

Figure 2�a� depicts the “phase diagram” of edge states of
graphene in �E ,W� plane for higher energies in the range E
= �2.545,2.97�, where holelike behavior occurs and band dis-
persion is nonlinear �non-Dirac electrons�. Again, edge states
are destroyed one by one. While the “phase diagram” topol-
ogy is similar to that for Dirac electrons �Fig. 1�, here the
band dispersion is quadratic with equal-energy spacing be-
tween the Landau levels. Due to this reason, the values of W
that are needed to destroy the last edge state at different
subband centers are almost the same. We have also calcu-
lated the “phase diagram” of edge states of a square lattice in
the �E ,W� plane using the same numerical method, results
are shown in Fig. 2�b� which are rather similar Fig. 2�a�. In
particular, it is more difficult to destroy edge states at low
filling factor �, consistent with the result of Ref. 12. We have

also studied the phase diagram of edge states of an armchair
graphene ribbon and found that the behavior is qualitatively
the same as that of zigzag graphene ribbons.

Next, we examine the nature of those edge states that
have survived disorder by calculating current density from
Eqs. �2� and �3� and plotting it along the propagating direc-
tion �x direction�. Figure 3 shows the current density of two
edge states in the absence of disorder for the square lattice
model. Edge states are clearly seen. Since the two transmis-
sion eigenchannels have different longitudinal energies or
effective velocities along the propagating direction, it gives
two different transmission patterns that correspond to two
different skipping orbits of classical trajectory.13 In Fig. 3�a�,
current flows in the negative direction �blue region� near the
sample boundary and in the positive direction �red region�
away from it. There is a region between these opposite flows
where the current density is very small. The classical trajec-
tory of an electron under Lorentz force is depicted in the

FIG. 2. �Color online� Phase diagram of edge states in �E ,W�
plane for: �a� holelike charge carriers in the zigzag graphene ribbon;
�b� electrons in a square lattice. The main difference between the
two phase diagrams is due to opposite charges of hole and electron.

FIG. 3. �Color online� Current density of two edge states flow-
ing from left to right along x direction, for a square lattice of 100
�40 sites in the absence of disorder. Here E=0.4 and �=0.052.
Note that the color scale is different for the two panels. Insets:
classical skipping orbits.
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inset, showing a nearly completed circular motion before
colliding with the sample boundary. There is a one-to-one
correspondence between the classical and quantum motions:
near the sample boundary the flow is from right to left, while
it flows opposite away from the boundary. Similar one-to-
one correspondence is also seen in Fig. 3�b�. For the same
square lattice model, Figs. 4 and 5 plot the x and y compo-
nents of current density of two eigenchannels for a particular
disorder configuration W=1 where the eigentransmission co-
efficients are T1=0.9999 and T2=0.3385, respectively. In the
numerical calculation, we have confirmed that the integral of
Ji over any cross-section area along the propagating direc-
tion gives the same value that is equal to �e2 /h�ti. From Figs.
4�a� and 5�a�, it is obvious that T1=0.9999 is an edge state
that survived this degree of disorder. Compare to Fig. 3, the
pattern of current density with disorder scattering is clearly
different. For the eigenchannel with T2=0.3385, it is clearly
a nonedge state �Fig. 4�b��: there is a circulating pattern with

large current density in the middle of the scattering region,
caused by the disorder scattering. Finally, we have also cal-
culated current density for edge states in disordered graphene
ribbons, and similar behaviors are observed as that of Fig. 4.

III. SUMMARY AND DISCUSSION

In summary, we have investigated the nature of edge
states in disordered mesoscopic samples in the IQHE regime.
Our results show that edge states are destroyed one by one as
disorder strength is increased. In the insulating regime, all
transmission eigenchannels are closed and the closing is also
one by one in the same order as the edge states were de-
stroyed. For graphene and the square lattice model, the
“phase diagrams” have similar topology but with some dif-
ferences due to band dispersions. We have introduced a
quantity which is the generalized current density, using it the
current density of each eigenchannel can be calculated in the
presence of disorder, giving us a vivid physical picture on
how edge states are destroyed. Since transmission coeffi-
cients of individual eigenchannels for mesoscopic samples
can be determined experimentally in the IQHE regime—as
we discussed in the paper, our conclusions on how edge
states are destroyed by disorder should be testable experi-
mentally.

We note in passing that how to generalize our results to
the large sample limit is an interesting problem requiring
further investigation. In particular, based on the picture of
Khmelnitskii14 and Laughlin,15 a global phase diagram of
quantum Hall effect in the �B ,W� plane was proposed by
Kivelson et al.16 for large samples which attracted consider-
able attention both theoretically12,17 and experimentally.18

According to it, an integer quantum Hall state with a fixed
filling factor � will float up in energy as the disorder strength
increases.14,15 In the context of mesoscopic sample, this idea
would mean the following. Consider Fermi level E=Ef, at
the mesoscopic sample boundary there are, say, � edge states
whose eigenvalues cut this energy Ef. The “float up” idea
means that when disorder is increased, the energies of edge
states increase to higher values, i.e., they float up. Hence, at
large enough disorder there will only be �−1 edge states
cutting Ef. This way, the system undergoes a series of tran-
sitions between � to �−1 states etc. Our results presented
above, however, indicate that for mesoscopic samples edge
states do not float up by disorder, they are destroyed to be-
come regular transmission eigenchannels which participate
transport.
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FIG. 4. �Color online� Current density along x direction for the
square lattice model as that of Fig. 3, with disorder strength W=1,
energy E=0.4, and magnetic field �=0.052. �a� For an edge state
that has survived disorder; �b� edge state that has been destroyed by
disorder.

FIG. 5. �Color online� Current density along y direction for the
square lattice model as that of Fig. 3, with disorder strength W=1,
energy E=0.4, and magnetic field �=0.052. �a� For an edge state
that has survived disorder; �b� edge state that has been destroyed by
disorder.

QIAO et al. PHYSICAL REVIEW B 79, 205308 �2009�

205308-4



*jianwang@hkusua.hku.hk
1 B. I. Halperin, Phys. Rev. B 25, 2185 �1982�.
2 M. Büttiker, Phys. Rev. B 38, 9375 �1988�.
3 R. E. Prange, in The Quantum Hall Effect �Springer-Verlag, New

York, 1987�.
4 K. S. Novoselov et al., Nature �London� 438, 197 �2005�; Y.

Zhang et al., ibid. 438, 201 �2005�.
5 M. Buttiker, Phys. Rev. B 46, 12485 �1992�.
6 S. Komiyama and H. Hirai, Phys. Rev. B 54, 2067 �1996�.
7 B. Reulet, J. Senzier, and D. E. Prober, Phys. Rev. Lett. 91,

196601 �2003�.
8 M. Kindermann, Yu. V. Nazarov, and C. W. J. Beenakker, Phys.

Rev. Lett. 90, 246805 �2003�.
9 M. P. López Sancho, J. M. López Sancho, and J. Rubio, J. Phys.

F: Met. Phys. 14. 1205 �1984�.
10 J. Wang and H. Guo, Phys. Rev. B 79, 045119 �2009�.
11 Although this definition seems to be somewhat arbitrary, one

could also use, for example, T=0.9 as the definition of edge
states. However our calculation shows that the qualitative fea-
ture of phase diagram does not depend on the definition of edge
states.

12 D. N. Sheng and Z. Y. Weng, Phys. Rev. Lett. 78, 318 �1997�.
13 C. W. J. Beenakker and H. van Houten, Solid State Phys. 44, 1

�1991�.
14 D. E. Khmelnitskii, Phys. Lett. 106A, 182 �1984�.
15 R. B. Laughlin, Phys. Rev. Lett. 52, 2304 �1984�.
16 S. Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev. B 46, 2223

�1992�.
17 D. Z. Liu, X. C. Xie, and Q. Niu, Phys. Rev. Lett. 76, 975

�1996�; T. Koschny, H. Potempa, and L. Schweitzer, ibid. 86,
3863 �2001�; H. Song, I. Maruyama, and Y. Hatsugai, Phys. Rev.
B 76, 132202 �2007�.

18 I. Glozman, C. E. Johnson, and H. W. Jiang, Phys. Rev. Lett. 74,
594 �1995�; T. Okamoto, Y. Shinohara, and S. Kawaji, Phys.
Rev. B 52, 11109 �1995�; S. V. Kravchenko, W. Mason, J. E.
Furneaux, and V. M. Pudalov, Phys. Rev. Lett. 75, 910 �1995�;
S. H. Song, D. Shahar, D. C. Tsui, Y. H. Xie, and D. Monroe,
ibid. 78, 2200 �1997�; C. H. Lee, Y. H. Chang, Y. W. Suen, and
H. H. Lin, Phys. Rev. B 58, 10629 �1998�; M. Hilke, D. Shahar,
S. H. Song, D. C. Tsui, and Y. H. Xie, ibid. 62, 6940 �2000�.

THEORETICAL INVESTIGATION OF HOW EDGE STATES… PHYSICAL REVIEW B 79, 205308 �2009�

205308-5


